

Effect of rice bran supplement on Nonalcoholic Fatty Liver

Disease treatment Hsinting YU¹, Pei-Yuan SU²

¹Department of dietetic and nutrition, Changhua Christian Hospital, Changhua, Taiwan ²Department of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan

Objective The prevalence of non-alcoholic fatty liver is $11 \sim 41\%$ in Taiwan, is the main chronic liver disease. The effective treatment method is lifestyle modification and achieve a weight loss of more than 10%. By nutrition counseling, dietitian find client's nutritional problems and provide dietary prescription; however, following dietary prescriptions is difficulty. We want to know if high dietary fiber and γ -oryzanol containing meal replacement(rice bran) can improve dietary compliance of weight control and then improve fatty liver.

Method The plan is to recruit 60 patients with moderate fatty liver disease (liver ultrasound index >3 points) and randomly divide them into two groups: a control group and an experimental group. Both groups will receive dietary consultations from nutritionists, while the experimental group will also be provided with one pack of rice bran (20 grams) per day to be consumed as a supplement. The rice bran can be added to soup or drinks and will be taken for a period of three months. The patients' lifestyle, dietary intake, posture, metabolice indicators, and changes in fatty liver will be tracked before and after the intervention. The rice bran is sourced from organic rice produced by the Changhua Christian Hospital Organic Farm (right picture). From 100 kilograms of rice, approximately 5-7% of rice bran is obtained. The composition of rice bran includes carbohydrates (35-50%), protein (12-17%), fat (13-22%), unsaturated fats, minerals, vitamins A, D, E, K, and B group, dietary fiber (23-30%), tocopherols, tocotrienols, lipopolysaccharides, alpha-lipoic acid, and gamma-oryzanol.

Result

This study was conducted from 2021-08-13 to 2023-11-15. A total of 60 subjects agreed to participate in this trial, of which 2 did not meet the admission conditions and 19 dropped out midway. A total of 39 subjects(21 males and 18 female) completed follow-up, 21 people in the rice bran group and 18 people in the control group, with an average age of 44.7 (29-70) years old. Table 1 show basic information between the two groups includes; there is no difference in subjects' age, BMI, body composition, fibroscan examination results, biochemical test values, calories, and protein intake. After 3 months of dietary control and tracking, the caloric intake of both groups was significantly reduced. Fat and carbohydrate intake were significantly reduced. BMI was reduced (the rice bran group dropped from 29.7 to 28.5, and the control group from 30.6 to 29.9, both with significant differences), the FFM(fat free mass) and skeletal muscle of the two groups were significantly reduced. In addition, the rice bran group had significant reductions in waist circumference and visceral fat area, and improvements triglycerides, and HbA1C. Improvement in the degree of fatty liver, and the hepatic steatosis (Controlled Attenuation Parameter score) and stiffness (elastography) measure by FibroScan® in the rice bran group dropped from 291 to 256 dB/m, p=0.001, 5.3 to 4.7 kPa, p=0.007, lower than those in the control group showing that rice bran has some effect on improving hepatic steatosis.(Table 2)

Table 1. Comparison of control group and treatment group before experimental

Variable	All Patient (N=39)	Control group (N=18)	Treatment group (N=21)	P-values	
Gender(Male), n(%)	21(53.8%)	8(44.4%)	13(61.9%)	0.276	
Age, yr, Median (IQR)	42(34-54)	42.5(34-49)	40(35-54)	0.791	
BMI, kg/m ² , Median (IQR)	29.8(28.1-32.8)	30.6(28.6-34.9)	29.5(27.6-32.5)	0.223	
Fibroscan(E), kPa, Median (IQR)	5.3(4.4-6.3)	5.2(4.4-6.1)	5.3(4.2-6.3)	0.967	
Fibroscan(CAP), dB/m, Median (IQR)	300(278-338)	314(291-339)	291(267-334)	0.112	
Body fat, %, Median (IQR)	35.7(31-41.2)	37.6(32.9-42.2)	35.2(30.8-40.8)	0.379	
FFM, kg, Median (IQR)	57(48.8-61.6)	55.7(45.9-62.2)	57(49.9-61.5)	0.989	
Skeletal muscle mass, kg, Median (IQR)	32.1(27.2-35.1)	31(25.2-35.2)	32.1(27.6-34.7)	0.945	
Waist, cm, Median (IQR)	97.4(90.1-107.1)	99.4(90.1-108.1)	97.4(94.5-105.5)	0.989	
Visceral fat area, cm ² , Median (IQR)	139.7(102-185.7)	138(118.7-203.6)	139.7(97.9-157.7)	0.686	
GOT ,IU/ml, Median (IQR)	32(25-38)	30.5(21-42)	33(26-38)	0.835	
GPT, IU/ml, Median (IQR)	45(27-66)	48.5(29-61)	41(24-66)	0.512	
AC, mg/dl, Median (IQR)	100(92-109)	100.5(94-106)	100(92-111)	0.666	
Triglyceride, mg/dl, Median (IQR)	131(103-178)	127(103-154)	144(119-178)	0.349	
HDL, mg/dl, Median (IQR)	44(39-50)	41.5(34-47)	44(41-52)	0.183	
LDL, mg/dl, Median (IQR)	112(93-145)	106(93-130)	115(93-149)	0.443	
HbA1C, %, Median (IQR)	5.5(5.4-5.9)	5.6(5.4-5.7)	5.5(5.3-6)	0.828	
Calorie, Kcal, Median (IQR)	2237(1699-2793)	2106.5(1835-2793)	2252(1699-2530.1)	0.728	
Protein, g, Median (IQR)	77.3(66-92)	75.4(65.3-92)	78.6(68-90.7)	0.749	
Fat, g, Median (IQR)	100(67-126.1)	101.3(67-126.1)	100(75-119)	0.967	
Carbohydrate, g, Median (IQR)	250(179.4-297)	240.3(196-276)	278.9(179.4-297)	0.587	
Dietary fiber, g, Median (IQR)	13.6(11.3-18.7)	11.66(7-16.13)	13.6(11.62-20.2)	0.349	

Data are presented as median (IQR) for both groups. Statistical significance was determined at a p-value < 0.05.(*indicates a statistically significant difference (P < 0.05).

Variable	Control group(only dietary counseling)			Experimental group(dietary counseling & rice bran)		
	Time point		P voluo	Time point		P voluo
	ТО	Tend	I -value	Т0	Tend	1 -value
BMI, kg/m², Median (IQR)	30.6(28.6-34.9)	29.9(28-33.3)	0.001*	29.7(27.4-32.6)	28.5(25.5-30.1)	0.001*
Fibroscan(E), kPa, Median (IQR)	4.9(4.4-5.9)	5.4(4.7-6.2)	0.798	5.3(4.2-6.3)	4.7(4.3-5.2)	0.007*
Fibroscan (CAP), dB/m, Median (IQR)	314(290.5-333.5)	284.5(263-330.5)	0.026*	291(267-334)	256(243-291)	0.001*
Body fat, %, Median (IQR)	37.6(32.9-42.2)	38.4(31.2-41.7)	0.794	35.2(30.8-40.8)	32.2(29-35.9)	0.007*
FFM, kg, Median (IQR)	55.7(45.9-62.2)	53.5(44.5-59.7)	0.006*	57(49.9-61.5)	54(47.9-60.1)	0.002*
Skeletal muscle mass, kg, Median (IQR)	31(25.2-35.2)	29.7(24.3-33.6)	0.004*	32.1(27.6-34.7)	30.7(26.6-34)	0.002*
Waist, cm, Median (IQR)	99.4(90.1-108.1)	94.7(89.2-109.7)	0.112	97.4(94.5-105.5)	94.2(89.3-100.1)	0.006
VFA, cm², Median (IQR)	138(118.7-203.6)	132.7(118.8-190.7)	0.327	139.7(97.9-157.7)	105.1(93.3-153.8)	0.013*
GOT,IU/ml, Median (IQR)	32(21-42)	29(20-36)	0.28	33(26-38)	25(21-33)	0.044
GPT,IU/ml, Median (IQR)	47(29-61)	34(22-47)	0.08	41(24-66)	26(18-41)	0.055
AC, mg/dl, Median (IQR)	100(94-106)	90(87-100)	0.021*	100(92-111)	99(96-105)	0.421
Triglyceride, mg/dl, Median (IQR)	127(103-154)	130(105-155)	0.85	144(119-178)	124(99-136)	0.016*
HDL, mg/dl, Median (IQR)	41(34-47)	42(37-45)	0.924	44(41-52)	44(40-55)	0.276
LDL, mg/dl, Median (IQR)	100(93-130)	102(80-112)	0.107	115(93-149)	112(91-145)	0.444
HbA1C, %, Median (IQR)	5.5(5.4-5.7)	5.5(5.2-5.7)	0.085	5.5(5.3-6)	5.5(5.2-5.7)	0.033*
Calorie, Kcal, Median (IQR)	2106.5(1835-2793)	1492.8(1268.5-1812.5)	0.002*	2252(1699-2530.1)	1392(1295-1667)	0.001*
Protein, g, Median (IQR)	75.4(65.3-92)	69.4(53.9-81)	0.053	78.6(68-90.7)	72(57.6-83.2)	0.23
Fat, g, Median (IQR)	101.3(67-126.1)	80.3(65-84)	0.011*	100(75-119)	69.2(56.9-80.4)	0.015*
Carbohydrate, g, Median (IQR)	240.3(196-276)	149.2(108.1-180)	0.004*	278.9(179.4-297)	129.9(96.4-150)	< 0.001
Dietary, g, Median (IQR)	11.66(7-16.13)	13.4(8-23.9)	0.721	13.6(11.62-20.2)	21.3(16.5-26.54)	0.091

Data are presented as median (IQR) for both groups. Statistical significance was determined at a p-value < 0.05. (*indicates a statistically significant difference (P < 0.05).

Conclusion

Conclusion Through this small clinical study, it was found that 20 grams of rice bran per day can improve metabolic indicators and improve fatty liver. This effect is speculated to be caused by the antioxidant effect of γ -oryzanol and dietary fiber that provides satiety and reduces caloric intake, to achieve weight control and improve fatty liver. Further research with larger sample sizes is needed to confirm these preliminary results.